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SIGNIFICANCE OF SPIN-TORQUE MAGNETIC DEVICES

• Compatible with Silicon 
Technology

• No moving parts as in 
conventional hard disks

• SOT reduces chances of 
dielectric breakdown

• Fast Read and Write 

• Volatile Memory (Cache)
– High endurance

• Non-volatile memory
– High thermal stability

– Negligible standby power

• NV memory in magnetic-silicon 
hardware

– Lower power dissipation even for ML 
tasks

• Neuromorphic Computing 
– Cache memory in processors

– Storing weights for ML tasks

• Low Energy Oscillators (GHz)

• Probabilistic Computing
– Energy Efficient

– Image processing, ML, Spin-Logic

FEATURES NEED FOR SPIN DEVICE INNOVATION

• Ultrafast bipolar SOT-MRAM [4]
– 275 nm p-MTJ deposited on top of Ta
– 0.4 ns writing speed with in-plane 

magnetic field along current direction
– TMR of 55%

• Field-Free writing in canted SOT-MRAM 
[5]

– i-MTJ with 55 nm CMOS
– 0.35 ns writing speed
– High thermal stability
– High TMR

• 1 Gb standalone STT-MRAM [6]
– p-MTJ with 28 nm CMOS
– High endurance and stability
– Reliable switching for wide range of 

voltages

RECENT PROGRESS

[1] A. Kent, Nat. Nanotech. 10.3 (2015), [2] T. Hanyu et al., 2019. 237-281,  [3] A. Shukla et al., Phys. Rev. 
Appl. 13.054020 (2020), [4]M. Cubukcu et al.,  IEEE Trans. on Magn. 54.4 (2018),
[5]  H. Honjo et al., IEEE IEDM (2019),   [6] S. Aggarwal et al., IEEE IEDM (2019)
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DIFFERENT CONFIGURATION

• Perpendicular Anisotropy FL
– Low writing current
– Faster switching time
– High density memory
– Symmetry breaking field required
– Fabrication complexity

• In-plane Anisotropy FL
– Thin film FL
– Simpler fabrication and field-free switching
– Lower switching current but inferior 

switching time

STT vs. SOT

• STT 
– Both spin and electric current flow 

perpendicular to the plane of spin-valve
– Vulnerable to dielectric breakdown
– Smaller area but problem of read disturb

• SOT
– In-plane electric current in a NM layer 
– Spin-polarized current due to SHE
– No dielectric breakdown
– Larger area due to separate read and write 

path but high endurance

i-MTJ vs. p-MTJ

[1] A. Shukla et al., Phys. Rev. Appl. 13.054020 (2020), 3



THEORY
o Numerical Solution

• Solve stochastic Landau-Lifshitz-Gilbert 
Equation under Macrospin
approximation

• Energy Density 

– Biaxial Anisotropy

– No external magnetic field

• Gaussian Random Thermal Noise with 
zero mean 

• Computationally Expensive

o Analytical Solution- Deterministic Limit
• Constant-Energy Orbit Approximation

• 3D LLG to a more tractable 1D equation

• No Thermal Noise considered

• Control parameter 𝑅𝑅 = 𝑀𝑀𝑠𝑠
𝐻𝐻𝑘𝑘

[1] D. Pinna et al., Phys. Rev. B 88, 104405 (2013)
[2] A. Shukla et al., Phys. Rev. Appl. 13, 054020 (2020) 
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MAGNETIZATION DYNAMICS

Is = 1.01Is
thm Is = 1.5Is

thm Is = 2Is
thM

Is
thm  - lower threshold (separates deterministic vs. thermal switching regime)

Is
thM - upper threshold (validity of CEOA)
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o 5-10 % error between analytical results and 
numerical solution of sLLG for switching time.

o Model validity extends beyond that of CEOA

o Robust model

BENCHMARKING OUR ANALYTICAL SOLUTIONS     
AGAINST NUMERICAL DATA- SWITCHING TIME

Data and References
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BENCHMARKING OUR ANALYTICAL SOLUTIONS AGAINST 
NUMERICAL DATA- DISTRIBUTION FUNCTIONS

𝑅𝑅 = 100𝑅𝑅 = 15
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CONCLUSIONS

• Spin-MRAMs have high endurance, could be used for both volatile Cache memories and long-
term non-volatile storage. 

• They have possible applications in the field of Neuromorphic computing, ML, Image processing, 
spin-logic, energy efficient computing.

• Both STT and SOT are used for writing with their respective advantages and disadvantages. 

• i-MTJ is easy to fabricate, does not require a symmetry breaking field and requires lower 
current to switch when compared to p-MTJ but has smaller switching time.

• Our analytical results show good agreement against numerical solution of LLG for small to 
medium spin current density.

• Models developed should complement experiments aid design, analysis and development of 
non-volatile memory.
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FERROMAGNETIC MATERIALS AND THEIR MAGNETIC 
PROPERTIES

MATERIALS Ms(T) Ku(MJ/m3) 𝑅𝑅 𝛼𝛼 Ref.

Terfenol-D 1.00 0.390 1.04 0.100 [1]

Co 1.81 0.410 3.20 0.020 [2]

Co0.6Fe0.2B0.2 1.20 0.095 6.00 0.015 [3, 4]

NiMnSb 0.84 0.013 21.6 0.002 [2, 5]

Fe 2.15 0.048 38.3 0.001 [2, 6]

EuO 2.36 0.044 50.4 0.015 [2]

Fe-Ga-B 1.63 0.020 53.4 0.100 [1]

[1] N. Kani, Ph.D. thesis, Georgia Institute of 
Technology, (2017)

[2] J. M. Coey, Magnetism and Magnetic 
Materials (Cambridge University Press, 2010)

[3] G. Rowlands et al., Deep subnanosecond spin 
torque switching in magnetic tunnel junctions with 
combined in-plane and perpendicular polarizers, 
Appl. Phys. Lett. 98, 102509 (2011)

[4] S. Yakata et al., Influence of perpendicular 
magnetic anisotropy on spin-transfer switching 
current in CoFeB/MgO/CoFeB magnetic tunnel 
junctions, J. Appl. Phys. 105, 07D131 (2009)

[5] P. Durrenfeld et al., Spin Hall effect-controlled 
magnetization dynamics in NiMnSb, J. Appl. 
Phys. 117, 17E103 (2015)

[6] H. Yoda et al., High efficient spin transfer 
torque writing on perpendicular magnetic tunnel 
junctions for high density MRAMs, Curr. Appl. 
Phys. 10, e87 (2010).
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