

SWITCHING TIME OF SPIN-TORQUE-DRIVEN MAGNETIZATION IN BIAXIAL FERROMAGNETS

Ankit Shukla University of Illinois at Urbana-Champaign, IL

Arun Parthasarathy New York University, New York, NY

Shaloo Rakheja University of Illinois at Urbana-Champaign, IL

SIGNIFICANCE OF SPIN-TORQUE MAGNETIC DEVICES

FEATURES

- Compatible with Silicon
 Technology
- No moving parts as in conventional hard disks
- SOT reduces chances of dielectric breakdown
- Fast Read and Write
- Volatile Memory (Cache)
 - High endurance
- Non-volatile memory
 - High thermal stability
 - Negligible standby power

NEED FOR SPIN DEVICE INNOVATION

- NV memory in magnetic-silicon hardware
 - Lower power dissipation even for ML tasks
- Neuromorphic Computing
 - Cache memory in processors
 - Storing weights for ML tasks
- Low Energy Oscillators (GHz)
- Probabilistic Computing
 - Energy Efficient
 - Image processing, ML, Spin-Logic

RECENT PROGRESS

- Ultrafast bipolar SOT-MRAM [4]
 - 275 nm p-MTJ deposited on top of Ta
 - 0.4 ns writing speed with in-plane magnetic field along current direction
 TMR of 55%
- Field-Free writing in canted SOT-MRAM
 [5]
 - i-MTJ with 55 nm CMOS
 - 0.35 ns writing speed
 - High thermal stability
 - High TMR
- 1 Gb standalone STT-MRAM [6]
 - p-MTJ with 28 nm CMOS
 - High endurance and stability
 - Reliable switching for wide range of voltages

[1] A. Kent, Nat. Nanotech. 10.3 (2015), [2] T. Hanyu et al., 2019. 237-281, [3] A. Shukla et al., Phys. Rev. Appl. 13.054020 (2020), [4]M. Cubukcu et al., IEEE Trans. on Magn. 54.4 (2018),
[5] H. Honjo et al., IEEE IEDM (2019), [6] S. Aggarwal et al., IEEE IEDM (2019)

DIFFERENT CONFIGURATION

STT vs. SOT

• STT

- Both spin and electric current flow perpendicular to the plane of spin-valve
- Vulnerable to dielectric breakdown
- Smaller area but problem of read disturb

• SOT

- In-plane electric current in a NM layer
- Spin-polarized current due to SHE
- No dielectric breakdown
- Larger area due to separate read and write path but high endurance

i-MTJ vs. p-MTJ

- Perpendicular Anisotropy FL
 - Low writing current
 - Faster switching time
 - High density memory
 - Symmetry breaking field required
 - Fabrication complexity
- In-plane Anisotropy FL
 - Thin film FL
 - Simpler fabrication and field-free switching
 - Lower switching current but inferior switching time

[1] A. Shukla et al., Phys. Rev. Appl. 13.054020 (2020),

THEORY

$\,\circ\,$ Numerical Solution

- Solve stochastic Landau-Lifshitz-Gilbert Equation under Macrospin approximation
- Energy Density
 - Biaxial Anisotropy
 - No external magnetic field
- Gaussian Random Thermal Noise with zero mean
- Computationally Expensive

Analytical Solution- Deterministic Limit

- Constant-Energy Orbit Approximation
- 3D LLG to a more tractable 1D equation
- No Thermal Noise considered
- Control parameter $R = \frac{M_s}{H_k}$

[1] D. Pinna et al., Phys. Rev. B 88, 104405 (2013)[2] A. Shukla et al., Phys. Rev. Appl. 13, 054020 (2020)

 I_s^{thm} - lower threshold (separates deterministic vs. thermal switching regime) I_s^{thM} - upper threshold (validity of CEOA)

 I_s^{thm} - lower threshold (separates deterministic vs. thermal switching regime) I_s^{thM} - upper threshold (validity of CEOA)

 I_s^{thm} - lower threshold (separates deterministic vs. thermal switching regime) I_s^{thM} - upper threshold (validity of CEOA)

 I_s^{thm} - lower threshold (separates deterministic vs. thermal switching regime) I_s^{thM} - upper threshold (validity of CEOA)

BENCHMARKING OUR ANALYTICAL SOLUTIONS AGAINST NUMERICAL DATA- SWITCHING TIME

Data and References

 5-10 % error between analytical results and numerical solution of sLLG for switching time.

o Model validity extends beyond that of CEOA

o Robust model

• Maximum error between analytical results and numerical solution is $\sim 12\%$ for $I_s = 2I_s^{\text{th }M}$

 $\circ \alpha = 0.03$

BENCHMARKING OUR ANALYTICAL SOLUTIONS AGAINST NUMERICAL DATA- DISTRIBUTION FUNCTIONS

R = 100

0.21

0.21

CONCLUSIONS

- Spin-MRAMs have high endurance, could be used for both volatile Cache memories and long-term non-volatile storage.
- They have possible applications in the field of Neuromorphic computing, ML, Image processing, spin-logic, energy efficient computing.
- Both STT and SOT are used for writing with their respective advantages and disadvantages.
- i-MTJ is easy to fabricate, does not require a symmetry breaking field and requires lower current to switch when compared to p-MTJ but has smaller switching time.
- Our analytical results show good agreement against numerical solution of LLG for small to medium spin current density.
- Models developed should complement experiments aid design, analysis and development of non-volatile memory.

FERROMAGNETIC MATERIALS AND THEIR MAGNETIC PROPERTIES

MATERIALS	<i>M_s</i> (T)	<i>K_u</i> (MJ/m ³)	R	α	Ref.
Terfenol-D	1.00	0.390	1.04	0.100	[1]
Со	1.81	0.410	3.20	0.020	[2]
$Co_{0.6}Fe_{0.2}B_{0.2}$	1.20	0.095	6.00	0.015	[3, 4]
NiMnSb	0.84	0.013	21.6	0.002	[2, 5]
Fe	2.15	0.048	38.3	0.001	[2, 6]
EuO	2.36	0.044	50.4	0.015	[2]
Fe-Ga-B	1.63	0.020	53.4	0.100	[1]

[1] N. Kani, Ph.D. thesis, Georgia Institute of Technology, (2017)

[2] J. M. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2010)

[3] G. Rowlands et al., Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers, Appl. Phys. Lett. 98, 102509 (2011)

[4] S. Yakata et al., Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeB/MgO/CoFeB magnetic tunnel junctions, J. Appl. Phys. 105, 07D131 (2009)

[5] P. Durrenfeld et al., Spin Hall effect-controlled magnetization dynamics in NiMnSb, J. Appl. Phys. 117, 17E103 (2015)

[6] H. Yoda et al., High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs, Curr. Appl. Phys. 10, e87 (2010).

Back to results